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I. Introduction and Summary

A. Discrepancies Between Experimental Results

This report summarizes the results of an investigation of rela-
tivistic effects which have an influence on the determination of
GM_ (M

E
tional constant.) The stimulus for this study has been an apparent

E is the mass of the Earth, G is the Newtonian gravita-

discrepancy between values of GME reported by researchers who use
different techniques and different data sets in the determination of
this physical quantity.
B. Determinations of GME’ 1983-85
Investigators who use Lunar Laser Ranging (LLR), together with
relativistic dynamical models of the solar system including gravita-
. tional interactions between the sun, planets and other solar system

bodies to determine GME in 1983 reported the valuel:

(GM 398400.444 + 0.008 km3/sec? . (1)

E)TDB
From the point of view emphasized in this report, the distinguishing
feature of this determination of GME is the use of a solar system
barycentric system of coordinates and a time scale based on Bary-
centric Dynamical time (TDB).

On the other hand, GME can be determined by accurate ranging
to LAGEOS (the Laser Geodynamics Satellite), a procedure which to a
large extent is independent of other solar system bodies (except for
tidal perturbations) and whose distinguishing feature is its use of a
coordinate reference frame which is nearly locally inertial and a
time scale based on the the SI second. The value of GME report-

ed in 1985 by the Goddard/EG&G/RMS group of investigators2 was :

= 3 2
¢ (GM.) | 4 opog = 398400.434 £ 0.002 km?/sec? . (2)
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3

At the same time, the University of Texas group reported a value’ of

(GM 398400.440 km3/sec? . (3)

E)LAGEOS

As early as 1982, Misner“ had considered the question of differ-
ences in units of length and mass between calculations with SI units
in the nearly locally inertial frame, and calculations done with the
barycentric system of coordinates and time scale. He did not specif-
ically consider GME, but he concluded that for the sun's mass
(GMS)TDB’
should be given by:

the value determined in the barycentric system,

(GMS) = (GM

DB /1 + L) (4)

S)SI
where

L = 1.55047 x 10-8, (5)

In Eq. (4), (GMS)SI is the value of the sun's mass in SI
units.

If a similar correction had been applied to the LLR value of
(GME)TDB’ given in Eq. (1), it would have given an apparent
SI value of 398400.450 kmalsecz. The fractional difference between
this value and the value given by Eq. (2) would then have been
4XI0“8, which seemed surprisingly large. Since other relativistic
effects possibly could be involved, a detailed examination of rela-
tivistic effects which might clarify the relationship between the
different determinations of GME was undertaken.

C. Determination of GME; the current situation, 1987

Since the above determinations of GM_, were reported, the

E
"best"” values of GM_ obtained by the two methods have changed.

We shall summarize Ehe current situation by reporting here the cur-
rently accepted values.

l1. The value of GME obtained from Lunar Laser Ranging
changed significantly when the position of the equinox was regarded
as a quantity to be determined and was solved for, rather than kept

fixed in the sky. The current best value is?®



(GM 398400.437 + .006 km3/sec? . (6)

E)TDB

6 carried out at Goddard and

2. The most recent LAGEOS solutions
at the University of Texas give values in the range 398400.440 to
398400.441 km3/sec?. It is difficult to assess whether modeling or
systematic effects might still influence the results appreciably, but
an uncertainty larger than .002 or .003 km3/sec? is regarded as
unlikely. Thus, the present situation is that the experimental
results from LAGEOS and LLR data agree well, if the correction
suggested by Misner is used. Also, Hellings7 has recently published
theoretical results which agree with the correction suggested by
Misner. Our more detailed study agrees with the results obtained by
Misner and Hellings, and is described in the remainder of this
report.

The theoretical results assume that all relevant relativistic

effects have been correctly incorporated into the dynamical models of

satellite and planetary motion and into time scale comparisons. If

this is not so, then the results cannot be guaranteed. For example,
it is well known that, due to the nonlinear (post-Newtonian
relativistic) terms in the Schwarzschild field of the Earth, the
perigee of an Earth satellite will precess by an angle of
3GME/[c2a(1—e2)] per revolution®, where a is the semimajor axis

of the satellite orbit and e is its eccentricity. For LAGEOS, at a
semimajor axis of a = 1.2x10° cm, this is equivalent to a motion of
the perigee of 1.3 c¢m per revolution. Currently such effects are
excluded from the dynamical model of LAGEOS's orbital motion? whereas
the derivation of the correction factor (1 + L) assumes that they are

accounted for.
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Thus while in principle one can derive the relativistic results on
the basis of quite rigorous arguments, if in the actual data analysis
programs some relativistic effects are omitted, the validity of the
relativistic correction factor (1 + L)--insofar as it applies to the
comparison of the experimental results—-is obscured. The best remedy
for this 1is to ensure that the dynamical models used to fit tracking
data truly incorporate all known important relativistic effects.

C. Outline of Report

We describe in this section the contents of this report. Sec-
tions II through IV contain the detailed arguments and derivations
leading to the result stated in Eq. (5), above. Since these argu-
ments are lengthy a summary of the arguments 1s given in briefest
possible form in Sect. V; the reader may thus turn to Sect. V for a
paraphrase of the argument. Section VI contains some estimates of
the consequences of neglecting or omitting certain important known
relativistic effects.

In general relativity (GR) the interpretation of theoretical
predictions requires great care. Many different coordinate systems
may be used to describe physical phenomena. These coordinate systems
may differ in the choices of length and/or time units, in their be-
havior at large distances from the sun, or in other ways. In this
report we shall discuss Parametrized Post-Newtonian (PPN) coor-
dinates; Eddington-Clark (EC) coordinates; a coordinate system based
on barycentric dynamical time (TDB coordinates); and Local Inertial
Coordinates. 1In spite of the many possibilities for choice of a co-
ordinate reference frame, observations of physical quantities made
using different coordinate systems must agree, when expressed in
terms of appropriately defined and agreed-upon invariant quantities
or observables such as proper lengths or proper times measured using
standard clocks. The relationships between these different coor-
dinate systems are discussed in Sect. III.

Knowledge of coordinate transformations between barycentric co-
ordinates and local inertial coordinates is essential in the deriva-
tion of Egq. (5)10. The derivation of these coordinate transforma-
tions is contained in a paper entitled "Relativistic Effects in Local
Inertial Frames,” by N. Ashby and B. Bertottill, which was published
in Phys. Rev. D34, 2246 (1986). This paper is incorporated as
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Appendix A of the present report. We shall quote results from this
paper as they are needed. '

Notation. We use upper case letters such as X" to denote
quantities measured in PPN, EC, or TDB coordinates as these are all
systems with origin at the Solar system barycenter. Small letters
such as x" denote quantities measured in local inertial frames.

Greek indices run from O to 3 and latin indices run from 1 to 3. The
signature of the metric tensor in vacuum is chosen to be (-1,1,1,1);

other notation 1s as in the book by Weber!Z?,

I1. Constancy of The Speed of Light

We now state an important assumption upon which subsequent dis-
cussion is to be based. Since much of the reasoning involves the
relationships between different choices of time unit, the purpose of
this assumption is to limit the different types of coordinate systems
which may be chosen, thus simplifying the discussion.

Assumption: The speed of light is a defined quantity:

¢ = 299 792 458 meters/second . (7)

This means that we shall only consider coordinate systems in which
the units of length and of time are related in such a way that Eq.
(7) is satisfied. This defines the unit of length (the meter) in
terms of the chosen time unit (the second.) The choice of unit of
length 1is thus not independent of the unit of time. For example, one
might consider a coordinate system in which a "new second” is twice
as long as the SI second. Then the "new meter"” would have to be,
correspondingly, twice as long as the SI meter in order for the speed
of light to have the value given by Eq. (7).

Some researchers!3 have investigated unit systems which would be
inconsistent with Eq. (7) above. This seems likely to introduce
additional confusion into an already complex situation and we shall
not consider such possibilities here.

A consequence of the above assumption is that the usually quoted
measure of mass, GM, (the gravitational constant times the mass), 1is

not independent of the choice of unit of time. This can be
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seen by noting that the Schwarzschild mass parameter GM/c2 corres-
ponding to mass M, has units of length, while ¢ has the same numeri-

cal value in all unit systems considered here.

II1I. Coordinate Time Scales

In this section we compare various coordinate systems which must
be considered in arriving at Eq. (5).

A. The Metric Tensor

The invariant interval ds between two events in space-time whose
coordinates differ by dX" (py = 0,1,2,3) is given by

- ds? = ¢ gaxMdx" , (8)
pv

where Guv is the metric tensor. It is appropriate at this point
to present several examples of the metric tensor, expressed in
different coordinate systems.

B. Eddington-Clark Metric

Eddington and Clark!"* derived an approximate solution of
Einstein's field equations using the "slow-motion, weak-field"
approximat:ionm'11 (see also Appendix A) which is quite adequate for
solar system dynamics. In this approximation scheme, a typical
velocity of a solar system body is considered small compared to ¢, so
V/ec is a small parameter. Also, gravitational effects appear through
a dimensionless measure of the gravitational potential, GM/c2R, and
in most cases in the solar system the order of magnitude of GM/c?R is

about the same as that of (V/c)z. Thus we write:

0(GM/c?R) = 0(V%/c?) .

The self-consistent solution of the field equations developed by
Eddington and Clark then requires that Gy, be calculated to 0(V%/c"),
3 3
Gg, to o(v?®/c®), and Gij

is given below, although we shall not make very much use of it in the

to 0(V%/c?). The resulting metric

discussion.
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\ M, VZ/c M, (X-%,)-%,/c
Ggo = ~-1 + 2U -20° + 4Y _§——_§—_ -3 3 3
Al ) A| A X - A|
_ . 2,4 "
s oM, [(X - %,)-7,] fe* 25 3 GM, GMy /c '
- 3 . - - ’
A |i iAl i B |i iA“itA XB|
46M, V1 /c"
6oy =~ ) %7 (9)
Gij = Gij(l + 2U0) .
+ +> >
MA is the mass having position XA, velocity VA and acceleration AA at
coordinate time X%®. U is the Newtonian gravitational potential
GMA/c2
v =173 T 3% . (10)
RN

The quantity X denotes the observation point. The prime in the
double summation means the term B = A is omitted in the sum.

The above metric is of importance because it is the basis of
Moyer's work!> and because the equations of motion of solar system
bodies based on the Eddington Clark metric have been incorporated
into computer codes for computation of solar system ephemerides at
the Jet Propulsion Laboratory. For reference we present here these
equations of motion which include the leading relativistic
(post-Newtonian) corrections to the Newtonian equations of motion.
Using thé abbreviations XEA = XE - XA , REA = |XEA| s
script E represents the object of interest (particularly the earth),

where the sub-

the equations of motion are:
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GM , X v2 GM_/c?
k ATEA E B 2 2
Ap = =Y'——5— (1 - 4U_+ — - ' + [2v2 - 4V ¥, 1/c
E 3 e 2 A E A
A Rg, B Rgy
- _2. 2 '2— iEA K /02 ) + 42' 2
RZ, A REA
oM, (X, o )(v ) oM. AK
_ 3y A“TEA" A L1 L ATA (1)
Y 2 2 ’
A REA A ¢ REA

where Ue is the negative of the gravitational potential due to
external sources, evaluated at the position of M
A, Eq. (A3).)

C. The PPN Metric

E (see Appendix

For comparison with the EC metric, we present here the PPN
metricl® including the parameters y and B, which is sufficiently

general to provide the comparisons we need.

GMAvilc“
Ggg = ~1 + 2U -28U% + (27+1)Z |i 3 I (12)
; cuA[(i i ) V 13/ ; Z GMAGMB/c“ _
- - 3 + 2(1-28) — - — H
A |i iA| A li iA||iA iB'
aM vi/e3 oM, [(%-% ) .7 1cxt-xh
A'A A Al YA A

1 1 .
So1 = 7 24T+ -5 2] SIEERE ;



Gyy = 855(1 + 2vU) .

Note that this metric does not contain the acceleration term
which is present in the EC metric. This difference between the forms
of the EC and the PPN soclutions tan be resolved by means of a gauge
transformation which transforms the PPN metric into a metric which
contains the acceleration term and which has the same form as the
metric of EC. The two metrics are physically equivalent in that they
describe the same distribution of masses. However they appear
different because they involve different sets of clocks. 1In
particular, the EC metric can be derived from the PPN metric by a
coordinate transformation:

- 3
20 o ox0 4 L oM, [(X - X)) .¥,1/¢c

2 ‘i - X

(13)
al

with no change in spatial coordinates. This resetting of the clocks
transforms the PPN metric into:

M, v2/et GM, (X - X,)-&,/c"
Ggo = -1 + 2U -280% + (2Y+2)£ T§—%_%—T - z A li n ; I A
A A
2.4 : u
_ s GMA[(z - ;A);§A] /e . 201-26)f | : G;AGM;/Q .
A I'A, AB"A“A' B'
i,.2
GM,V./c
A'A
G = - 2(y+1) R (14)
0l E lg _ §A|

with no change in Gij' As can readily be seen, this metric
reduces to the EC metric exactly when vy = 8 = 1, and in general has
the same analytical form as that of EC including the acceleration
term.

The EC metric is a solution to Einstein's field equations which
satisfies causal boundary conditions corresponding to retarded
potentials such as the well-known Lienard-Wiechert potentials of

electromagnetic theory. Resetting the clocks by means of the gauge
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transformation, Eq. (13), produces an acceleration term in the PPN
metric, as can be verified by straightforward application of the
usual tensor transformation laws. Since general relativity is
generally covariant with respect to arbitrary tensor transformation
laws, the PPN metric is a solution to the field equations
corresponding to the same distribution of source masses which,
howevef, arigses from boundary conditions corresponding to half
retarded, half-advanced potentials.

Since the PPN and EC metrics are physically equivalent, we shall
base our subsequent discussion on the EC metric because Moyer's
development of the equations of motion, and the implementation of
these equations of motion in computer code, is based on the EC
metric. It is important to point out however, that the PPN metric,
although it appears different from the EC metric, gives rise to equa-
tions of motion which are of precisely the same form as Eqs. (11).

D. TDB Coordinates

We shall now discuss the introduction of TDB coordinates, which
differ by a scale factor from the EC coordinates—-or barycentric
coordinates—--given in Eqs. (9). The argument presented below 1is
similar to that presented by Hellings7, who uses PPN coordinates
rather than EC coordinates. To 0(V2/c?) the two metrics are
identical, however, so the arguments are almost equivalent.

We begin with the Eddington-Clark metric keeping only terms-of
0(v3/c2); to this order the EC metric is:

Ggg = - (1 - 2U) ;5 Ggi =0 ; Gij =51j(1+2U) (15)

Then the invariant interval, Eq. (8), is to this order

- ds? = - (1 - 20)(dX9)2 + (1 + 2U)(dX? + dY? + dz? ) (16)

and U is given by Eq. (10).

Now standard clocks at rest on the surface of the Earth, which
define the SI second, beat more slowly than the coordinate clocks
represented by the variable X% in the above equation, due to

relativistic effects. These are principally gravitational redshifts
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due to gravitational potentials of the sun and the Earth, and time
dilation (second-order Doppler shifts) of Earth-Borne clocks due to
the Earth's orbital motion. If we compute the long-term time average

of ds/dX? for such an Earth-borne clock, then to O(V2/c2) we have:

< > =<1 - U -V2/2e2> =1 - L, (17)

where V is the barycentric coordinate velocity of the Earth-borne
clock.
The factor L has been computed in detail by Misner and by

* has summarized the contributions and his summary

Hellings. Misner
is repeated here for convenience. The main contributions to L are as
follows: from the barycentric velocity and solar potential at the
Earth-Moon barycenter, 1.480594x10"8%; from the Earth's potential at
the equator, 0.069535x10‘8; from the time-averaged potential due to
Jupiter, 0.00018IXI0'8; from the Earth's rotational velocity at the
equator, 0.000120x10'8, plus still smaller effects due to the

potentials of Saturn and the moon. The value of L is thus:
L = 1.55047 x 10~% . (18)

Hellings7 gives a value L = 1.55052x10~% which is slightly larger.
This may partly'be due to choice of a different averaging interval
but also due to Hellings' inclusion of potentials from other solar
system bodies such as the minor planets and asteroids. For purposes
of this report the difference between these two values is
insignificant.

The TDB time coordinate is introduced by means of the following
scale transformation in time:

0 - _ 0
Xopp = (1 L)X (19)

Thus TDB clocks beat at the same average rate as Earth-borne clocks,

from the point of view of an observer in the barycentric system.
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The new metric is therefore:

- ds? = - (1-2u)(dngB)2/(1-L)2 + (142U0)(dx2%+dY2+4dz?) (20)

which can be rewritten:

- (1-L)%4s? = -(l—ZU)(dX%DB)Z + (1+20)[(1-L)2(dx2+dY%+dz%)] . (21)

The left side can be interpreted as the invariant interval measured
in TDB units. If we introduce

Sepp = (1 - L)s , (22)

then the metric becomes:

= =(1-20)¢dx% )2 + (1+20)[(1-L)2(dx2+dY?%+dz?)]. (23)

(d TDB

2
Stpp)

In order for this invariant interval to be cast into the same form as
the interval in Eq. (16), we must do two things: (a) we must
introduce new scaled spatial coordinates,

K
Xrpe

(1-1)x% ; (k = 1,2,3) (24)
and (b) we must ensure that the dimensionless quantity U retains its
form and magnitude unchanged in TDB coordinates. Since ¢ does not

change, this means that
2 _ 2
GMA/c GMA(I L)/c

) E |i - iA’ ) E |i

U = U (25)

_i ‘ TDB
TDB “ATpp

and so in TDB coordinates we must identify the mass parameter by:

(GM) (1-L)GM . (26)

TDB

with all these changes, the theoretical description of the physics of
planetary and satellite motion and of the motion of electromagnetic

signals (photons) is of the same mathematical form in TDB
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coordinatesg, to O(Vz/cz), as it is 1in EC coordinates:

Crpg = &5 Urpp = U
2 _ 4. 0 2
(dsppg)® = ~(1-2Uppp) (dXqpp)
2 2 2
+ (1+2UTDB)(deDB+dYTDB+ dZTDB) . (27)

At this point it may be objected that the metric in Eqs. (13) was
written only to lowest order whereas the difference between U and
UTDB in Eq. (27) involves terms of 0(v*/c") only, therefore the
argument leading to Eq. (26) cannot be considered as rigorous because
of the possibility that higher order terms might modify the result.
We shall therefore give two additional arguments showing the
conclusion (26) is valid.

First if we look at the full metric temsor, Eq. (9), including
terms of O(V*/c'), then it may be verified by inspection that each

‘term in Ggg is unchanged in form by the combination of
transformations

Crpp= © ngB = (1-L)x" ; (6M) ppp = (1-L)GM . (28)
These imply:
V%DB/Q = dX%DB/dXOTDB = dxk/dX0 = Vk/c , and (29)
(oM, AKXy = [(1-L)eM, (1-1)AK/(1-1) 2] = om, Af . (30)
A"A’TDB A A A™A

Therefore (GOO)TDB = Ggg+ A similar argument holds for Gij'
For the contributions to the metric arising from Goi’ we have:

i
[6,,4X%X Jpp = - 4 ] [ —2
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. (1-1) ch(vi/c)
1" A (1-L)|i - XAI

- (1—L)2coidx°dxi ) (31)

(1-L)24x%qax'}

The factor (1-L)2? in the above expression is just the factor needed
to make the following equation valid:

(d Y2 = (¢ ) ax® _4ax¥ . (32)

STDB uv’TDB DB " TDB

A second argument which is more powerful and convincing may be
obtained by examining the equations of motion, Eqs. (11), term by
term. Using the scale changes of Eq. (28), we imagine multiplying

every term in Eq. (11) by (1-L)~l. The left side becomes (AI};)TDB and

each term on the right including all post-Newtonian terms then may be
transformed into its TDB counterpart.

The value of this approach is that it may be seen that the

.equations of motion take the same mathematical form in
Eddington-Clark coordinates, as they take in TDB coordinates.

A simple explanation of the result (26) is as follows: A TDB
clock beats more slowly, by the factor (1-L), than an EC clock.
Therefore to maintain a universally defined numerical value for the
speed of light ¢, the ;nit of length in TDB coordinates must be
physically longer than the length unit in EC coordinates. Thus since
(GM/cz)TDB represents a physical length as measured using a TDB
meter stick, the numerical value of (GM/cz)TDB will be less than

it is in EC coordinates. The speed of light ¢ is the same in the two
unit systems, however, hence:

(GM)TDB = (1-L)GM . (26)

E. The SI Second; Standard Clocks
The relation between TDB coordinates and EC coordinates may be
further clarified by considering the respective units of time in
.terms of atomic clocks based on Cesium.
A "Standard Clock"” 1is an atomic clock using transitions between

certain levels of Cesium. Specifically, the length of the SI second
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18 defined as:

1 SI second = 9 192 631 770 cycles of Cesium. (33)

A standard SI second may be realized by any observer who is at rest
with respect to such a clock and near it, by measuring the above
number of cycles of Cesium in any one of a number of identically
constructed Cesium clocks.

F. Standard Clocks in TDB Coordinates

Choice of the number of cycles defining the time unit as in
Sect. E. above is a matter of convention. For purposes of later
discussion we shall define a different standard clock in which the
time unit is slightly longer. We shall refer to these clocks as "TDB
standard clocks” because the time unit will agree with the unit of
TDB time. This alternate system of standard clocks is defined by
requiring the length of the TDB second to be:

1 TDB second = (l+L)x(9 192 631 770) cycles of Cesium. (34)

where L is given by Eq. (5). The reason for this choice of L has

been discussed previously. Thus the TDB second is:

1 TDB second = 9 192 631 912.5 cyclés of Cesium. (35)

The standard TDB clock thus beats more slowly than the standard SI
clock discussed in Sect. E., above.

G. Relnterpretation of EC Metric In Terms of TDB Coordinates

It was seen in Sect. III.D. above, that the metric tensor and
equations of motion, expressed in TDB coordinates, have the same form
as the metric tensor and equations of motion, respectively, in EC
coordinates. The lunar laser ranging data analysis and solar system
ephemerides work at JPL in fact uses the interpretation of Moyer's
equations of motion in terms of TDB coordinates’.

If we adopt this interpretation, we can obtain a very compelling
derivation of Eq. (5). Let us suppose that in the equations of
motion, Eqs. (11), all quantities are to be considered as expressed

in TDB coordinates, with the standard TDB clocks beating at the rate
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given by Eqs. (34) and (35). Then we may also reinterpret the
coordinate transformations derived in Appendix A as providing the
metric in local inertial coordinates in terms of TDB units. Under
this coordinate transformation to local inertial coordinates the mass
parameter (GME)TDB does not change. The proof is given in

Appendix A. This value (GME) would then be obtained by

fitting the LAGEOS ranging exgzziments, if TDB standard clocks were
used on Earth. But such clocks are not used, clocks based on the SI
second are used. These clocks run more rapidly than do the TDB
clocks, .by the factor (l+L). Therefore

(GME)SI = (1+L)x(GME)TDB
which again yields Eq. (26) since L € 1.

It should be stressed again that the results proved in Appendix
A provide a crucial link in this argument, namely that if {in the
barycentric EC metric, Eq. (9), the Earth has mass parameter
GME/cz, then after transforming to Local Inertial Coordinates the
mass parameter 1s numerically unchanged. In both coordinate systems
the same standard clocks are used. This will be discussed in more

detail in the next section.

IV. Local Inertial Coordinates; Coordinate Transformations

The purpose of this section is to summarize the main results
obtained in Appendix A for purposes of this report. 1In Appendix A,
one begins with the EC metric in barycentric coordinates, in which
the mass parameter of the Earth is represented by GME, measured
using conventionally selected standard rods and standard clocks. The
Earth is in free fall along a geodesic in space-time. The position
of the Earth becomes the origin of a freely falling, local inertial
frame in which the time coordinate can be directly related to time
elapsed on a freely falling standard clock and the space coordinates
are proper distances, measured using standard rods. Coordinate
transformations are constructed between barycentric coordinates and
local inertial coordinates, and applied to the EC metric. It 1is

found that the term in the metric tensor, in the local inertial
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frame arising from the Earth's potential is described by the same
mass parameter. There is no mass parameter change upon transforming
from barycentric coordinates to local inertial coordinates.

This is because the same type of standard clocks are used to
measure time both in barycentric coordinates and in local inertial
coordinates. In the case of barycentric EC coordinates, a standard
clock at rest at infinity (where Gy, = -1) will determine the rate of
advance of coordinate time. 1In local inertial coordinates, an
identically constructed clock at rest on the surface of Earth
determines the rate of advance of coordinate time. Since identical
clocks are used, the mass parameter GME of the Earth has the same
numerical value in the two coordinate systems.

This result--proved in detail in Appendix A--shows that if the
same unit of time (in terms of cycles of Cesium) is used in bary-
centric and local inertial coordinates, then the mass parameters of
the Earth in the two coordinate systems must agree.

The result, Eq. (5), may then seem paradoxical singe in 1976 the

IAU passed a resolutionl’

requiring that, on the average, the TDB
second has to be the same length as the SI second. However as shown
in Sections III. E. and III. F., standard TDB clocks and standard SI
clocks when compared side by side, would beat at different rates.

This explains Eq. (5).

V. Summary

Lunar Laser Ranging data analysis at JPL utilizes a system of
units based on the TDB second, and solar system dynamics is described
in a barycentric system of coordinates. LAGEOS ranging data analysis
utilizes a system of units based on the SI second, and a loecally
inertial system cf cocrdinates. From the point of view of an ob-
server at rest in the barycentric system, the TDB second is on the
average the same length as the SI second, but due to relativistic ef-
fects these SI clocks beat more slowly than standard SI clocks would
beat 1f they were at rest in the barycentric system. The SI unit of
time is therefore shorter than the TDB unit of time. The SI unit of
length 1is alsc shorter than the TDB unit of length, in order to main-
taln the same numerical value of ¢. Thus a mass parameter GM/c2 hav-
ing dimensions of length, will have a larger numerical value in SI

units than in TDB units. Hence GMTDB = (1—L)GMSI_
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VI. Implications of Neglecting Relativistic Effects
A. The Nonlinear Schwarzschild Field of the Earth

Let us assume that in ranging to an earth satellite such as
LAGEQS, the mass of the Earth 1is determined from observations of two
quantities: the period of revolution of the satellite around the
Earth, and the semimajor axis of the satellite's orbit. For
simplicity we shall assume the orbit is circular, and assum that
ranging measurements give directly the radius of the orbit. Eq. (77)
in Appendix A is Kepler's third law and includes relativistic
correction terms. If the higher order relativistic corrections are
retained, which arise from the nonlinear contributions due to the
gravitational field of the Earth itself, then:

GM, = 4n2R3/T2(1 + 3GME/c2R) . (36)

Since for LAGEOS' orbit 3GM /c?R = 1.1x10~°, the relativistic
correction in parentheses in Eq. (36) is very small. Currently this
correction is neglectedg. If included it could affect the determina-
tion of the Earth's mass by about 0.0004 km3/sec?. This would be a
systematic effect of magnitude about 20% of the error quoted in Eq.
(2) and is probably sufficiently large that it should be accounted
for. The correction is in such a direction that the agreement
between the two sides of Eq. (5) would be improved.

Bs Precession of Perigee of LAGEOS

As mentioned in the introduction, the rate of precession of
perigee of LAGEOS due to the nonlinear Schwarzschild field of the
Earth is 3GME/c2a(1—e2) per revolution. The period of revolution
is 2n/[a3/GME], so the rate of perigee precession per second due

to relativity 1is:

3/2
3(GM_)
E = 8.5 x 10-!% rad/sec , (37)

2wc2a5/2(1—e2)

where we have used a = 1.2 x 107 meters, e= 0.
On the other hand there is a much larger contribution to the
Perigee precession rate due to the Earth's oblateness. Considering

only the quadrupole moment coefficient J, = -V/5xC,, of the Earthlg,
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the secular part of the precession rate!? isg:

2
3J2Re
2a2(1—e2)2

/[GME/a3] = 2.2 x 10~7 rad/sec (38)

where Re = 6.38x10° meters is the equatorial radius of the Earth,
and C,, = ~484.16499x10"% (see reference 18).

We observe from these results that the relativistic perigee pre-
cession effect 1is only 3.9x10~7 of that due to the Earth's quadrupole
moment. However the uncertainty in J, is 0.6 parts per million!8,
Since relativistic effects are not currently accounted for, the ex-
pected relativistic precession could contribute to a systematic error
in the rate of perigee precession which 1s about 60%Z of that which
could arise from an error in J, equal to the quoted uncertainty. 1In
this case the neglect of relativistic effects has direct implications
for the determination of J, (or C,,) rather than GME.
C. Precession of the Nodal Line; Geodetic Precession
The phenomenon of geodetic precession11 implies that the orbital

plane of LAGEOS will precess by an amount:

3ﬂGMSUN/c2R = 9.2x10-% rad/sec = 19 marcsec/yr , (38)

where R is the radius of the Earth's orbit about the sun and

GMSUN/c2 ~ 1.46x10°3 meters is the Sun's Schwarzschild radius.

This precession would give rise to a motion of the nodal line by

about 9.2 cm per month at a distance a = 1.2x107 meters from Earth.
The quadrupole moment of the Earth also causes secular precession

of the nodal 1line, which!? to lowest order in eccentricity e is:

3J,R2 3 8 8
% € cos I/[GME/a ] = 7.2x107° rad/sec = 4.7x10°marcsec/yr (39)

2a

where we have used I = 109° for the orbital inclination of LAGEOS.
The fractional uncertainty in J, of 0.6 parts per million would thus
correspond to a nodal precession rate of about 280 milliarcseconds
per year, which is significantly larger than the geodetic precession

rate. This relativistic effect 1s therefore so small that it
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probably does not need to be considered yet in the modelling of

LAGEOS observations, because of the large uncertainty im J,.

VII. Conclusions

In sum, the principal implications of relativity for the deter-
mination of GME stem from the different choices of units of time,
as expressed through Eqs. (4), (5), and (26). Additional relativis-
tic effects arise from the nonlinear Schwarzschild field of the Earth
could contribute systematically to the determination of the Earth's
mass, and quadrupole moment, by amounts which vary from 20%Z to 60% of
the currently quoted errors in these quantities, respectively, and

should be taken into account in the orbit modelling.
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